Ce serveur Gitlab sera éteint le 30 juin 2020, pensez à migrer vos projets vers les serveurs gitlab-research.centralesupelec.fr et gitlab-student.centralesupelec.fr !

Commit 0a46145a authored by Hachemin Pierre-Yves's avatar Hachemin Pierre-Yves

final extract

parent 4146b653
......@@ -18,11 +18,11 @@ import moviepy.editor as mp
follow = True
queue = Queue()
linkFile = './link-dictionaries/link-dictionary2015-1.txt' # Input dict of trailers #TODO; change path
linkFile = './link-dictionaries/link-dictionary20172.txt' # Input dict of trailers #TODO; change path
linkDict = {}
exceptDict = {}
videoDir = './video/' # Folder to store temporarely the videos
spectrumDir = './spectrumImages/spectrumImages2015/' # Output folder to store the spectrums #TODO; change path
spectrumDir = './spectrumImages/spectrumImages2017/' # Output folder to store the spectrums #TODO; change path
countDownload = 1
countSpectrum = 1
......
File added
# import the necessary packages
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import argparse
import utils
import numpy as np
import cv2
def centroid_histogram(clt):
# grab the number of different clusters and create a histogram
# based on the number of pixels assigned to each cluster
numLabels = np.arange(0, len(np.unique(clt.labels_)) + 1)
(hist, _) = np.histogram(clt.labels_, bins = numLabels)
# normalize the histogram, such that it sums to one
hist = hist.astype("float")
hist /= hist.sum()
# return the histogram
return hist
def plot_colors(hist, centroids):
# initialize the bar chart representing the relative frequency
# of each of the colors
bar = np.zeros((50, 300, 3), dtype = "uint8")
startX = 0
# loop over the percentage of each cluster and the color of
# each cluster
for (percent, color) in zip(hist, centroids):
# plot the relative percentage of each cluster
endX = startX + (percent * 300)
cv2.rectangle(bar, (int(startX), 0), (int(endX), 50),
color.astype("uint8").tolist(), -1)
startX = endX
# return the bar chart
return bar
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required = True, help = "Path to the image")
ap.add_argument("-c", "--clusters", required = True, type = int,
help = "# of clusters")
args = vars(ap.parse_args())
# load the image and convert it from BGR to RGB so that
# we can dispaly it with matplotlib
image = cv2.imread(args["image"])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# show our image
plt.figure()
plt.axis("off")
plt.imshow(image)
# reshape the image to be a list of pixels
image = image.reshape((image.shape[0] * image.shape[1], 3))
# cluster the pixel intensities
clt = KMeans(n_clusters = args["clusters"])
clt.fit(image)
# build a histogram of clusters and then create a figure
# representing the number of pixels labeled to each color
hist = centroid_histogram(clt)
bar = plot_colors(hist, clt.cluster_centers_)
# show our color bart
plt.figure()
plt.axis("off")
plt.imshow(bar)
plt.show()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment