Commit ff61f967 authored by Unknown's avatar Unknown

First Commit
parent 00e7be2b
This source diff could not be displayed because it is too large. You can view the blob instead.
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
# On some implementations of matplotlib, you may need to change this value
IMAGE_SIZE = 72
def generate_a_drawing(figsize, U, V, noise=0.0):
fig = plt.figure(figsize=(figsize,figsize))
ax = plt.subplot(111)
plt.axis('Off')
ax.set_xlim(0,figsize)
ax.set_ylim(0,figsize)
ax.fill(U, V, "k")
fig.canvas.draw()
imdata = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)[::3].astype(np.float32)
imdata = imdata + noise * np.random.random(imdata.size)
plt.close(fig)
return imdata
def generate_a_rectangle(noise=0.0, free_location=False):
figsize = 1.0
U = np.zeros(4)
V = np.zeros(4)
if free_location:
corners = np.random.random(4)
top = max(corners[0], corners[1])
bottom = min(corners[0], corners[1])
left = min(corners[2], corners[3])
right = max(corners[2], corners[3])
else:
side = (0.3 + 0.7 * np.random.random()) * figsize
top = figsize/2 + side/2
bottom = figsize/2 - side/2
left = bottom
right = top
U[0] = U[1] = top
U[2] = U[3] = bottom
V[0] = V[3] = left
V[1] = V[2] = right
return generate_a_drawing(figsize, U, V, noise)
def generate_a_disk(noise=0.0, free_location=False):
figsize = 1.0
if free_location:
center = np.random.random(2)
else:
center = (figsize/2, figsize/2)
radius = (0.3 + 0.7 * np.random.random()) * figsize/2
N = 50
U = np.zeros(N)
V = np.zeros(N)
i = 0
for t in np.linspace(0, 2*np.pi, N):
U[i] = center[0] + np.cos(t) * radius
V[i] = center[1] + np.sin(t) * radius
i = i + 1
return generate_a_drawing(figsize, U, V, noise)
def generate_a_triangle(noise=0.0, free_location=False):
figsize = 1.0
if free_location:
U = np.random.random(3)
V = np.random.random(3)
else:
size = (0.3 + 0.7 * np.random.random())*figsize/2
middle = figsize/2
U = (middle, middle+size, middle-size)
V = (middle+size, middle-size, middle-size)
imdata = generate_a_drawing(figsize, U, V, noise)
return [imdata, [U[0], V[0], U[1], V[1], U[2], V[2]]]
im = generate_a_rectangle(10, True)
plt.imshow(im.reshape(IMAGE_SIZE,IMAGE_SIZE), cmap='gray')
im = generate_a_disk(10)
plt.imshow(im.reshape(IMAGE_SIZE,IMAGE_SIZE), cmap='gray')
[im, v] = generate_a_triangle(20, False)
plt.imshow(im.reshape(IMAGE_SIZE,IMAGE_SIZE), cmap='gray')
def generate_dataset_classification(nb_samples, noise=0.0, free_location=False):
# Getting im_size:
im_size = generate_a_rectangle().shape[0]
X = np.zeros([nb_samples,im_size])
Y = np.zeros(nb_samples)
print('Creating data:')
for i in range(nb_samples):
#if i % 10 == 0:
# print(i)
category = np.random.randint(3)
if category == 0:
X[i] = generate_a_rectangle(noise, free_location)
elif category == 1:
X[i] = generate_a_disk(noise, free_location)
else:
[X[i], V] = generate_a_triangle(noise, free_location)
Y[i] = category
X = (X + noise) / (255 + 2 * noise)
print('Data Created!')
return [X, Y]
def generate_test_set_classification():
np.random.seed(42)
[X_test, Y_test] = generate_dataset_classification(300, 20, True)
Y_test = np_utils.to_categorical(Y_test, 3)
return [X_test, Y_test]
def generate_dataset_regression(nb_samples, noise=0.0):
# Getting im_size:
im_size = generate_a_triangle()[0].shape[0]
X = np.zeros([nb_samples,im_size])
Y = np.zeros([nb_samples, 6])
print('Creating data:')
for i in range(nb_samples):
#if i % 10 == 0:
# print(i)
[X[i], Y[i]] = generate_a_triangle(noise, True)
X = (X + noise) / (255 + 2 * noise)
print('Data Created!')
return [X, Y]
import matplotlib.patches as patches
def visualize_prediction(x, y):
fig, ax = plt.subplots(figsize=(5, 5))
I = x.reshape((IMAGE_SIZE,IMAGE_SIZE))
ax.imshow(I, extent=[-0.15,1.15,-0.15,1.15],cmap='gray')
ax.set_xlim([0,1])
ax.set_ylim([0,1])
xy = y.reshape(3,2)
tri = patches.Polygon(xy, closed=True, fill = False, edgecolor = 'r', linewidth = 5, alpha = 0.5)
ax.add_patch(tri)
plt.show()
def generate_test_set_regression():
np.random.seed(42)
[X_test, Y_test] = generate_dataset_regression(300, 20)
return [X_test, Y_test]
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment